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Abltract-A model of rate·independent plasticity is proposed, in which neither loading surfaces nor yield
surfaces are assumed to exist. It is shown that the existence of loading surfaces follows mathematically
from a Ioading/un1oading postulate and the continuity of material behavior and that the second law of
thermodynamics can furnish a yield criterion which may be identified with the Frank-Read source
activation criterion.

I. INTRODUCTION

In the course of its development in the present century, the theory of plasticity has become
enmeshed in a tangled web of interdependent pOstulates: yield criteria, hardening rules,
normality and stability principles, quasi-thermodynamic postulates on work cycles and others.
A few years ago I presented [1,2] a tentative proposal to simplify the structure of plasticity
theory by basing it on a minimal definition of plasticity, namely the loading-unloading irrever­
sibility: a material element in a plastic state behaves plastically upon loading and elastically
upon unloading. It is my purpose in this brief note (brief on account of the simplicity of the
ideas) to construct a formal axiomatic model of rate-independent plasticity. By "axiomatic" I
mean that some unproved assumptions are formally presented, with the remaining properties of
the model following from them.

The essential results to be presented are, first, that the existence of loading surfaces in
temperature-deformation space follows from the defining (loading/unloading) postulate and
from an assumption on the continuity of material behavior; and, second, that a yield criterion
(in the strict sense of a criterion for the beginning of plastic behaviorHhrough it need not
exist-may be derived from the second law of thermodynamics.

By a material element I mean a body so small that (a) its deformation (from a reference
configuration) is determined solely by the right Cauchy-Green tensor and (b) heat flow within
the element can be neglected. The thermomechanical state of the element is thus specified by
the state vector s=(A, q) in the state' space R7 x Q. Here A stands for (8, C), 8 being the
absolute temperature and C = FTF being the right Cauchy-Green tensor, where F is the
displacement gradient; and q E Q is a finite-dimensional material vector (that is, one which is
unaffected by a superposed rigid-body motion) whose components are the instantaneous values
of the internal variables.

In accordance with current models of plasticity, the displacement gradient F is decomposed
as

F= F.Fp ,

where, if dX is an infinitesimal vector in a stress-free reference configuration of the element,
then Fp dX is the image of dX in the likewise stress-free but plastically deformed "inter­
mediate" configuration. The intermediate configuration is chosen in such a way that Fp is a
material tensor (it is then called "isoclinic" [3]). It is important to note that the entire tensor Fp,

and not merely its right Cauchy-Green tensor Cp =F,TFp, must in general be included in a
description of the state, except in certain cases of isotropy. Consequently, the components of
Fp must be included among those of q, so that the dimension of Q is at least nine.

The essential difference between the rate-dependent (or viscoplastic) and rate-independent
models of plasticity is that in the former the material will respond elastically in a sufficiently
fast process; that is, if the temperature-deformation rate vector A is sufficiently large in
magnitude, the change in q will be negligible. In rate-independent plasticity, on the other hand,
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there are directions of A such that q must change (with plastic deformation taking place)
regardless of the magnitude of A. Such directions will be called plastic directions, and the
remaining directions will be called elastic, as in the following formal definition.

2. PLASTICITY AND LOADING SURFACES
Definitions

(1) A vector r E R' is an elastic (plastic) direction at s =(A, q) if there exists a k > 0 such
that s' = (A + hr, q) is attainable (unattainable) from s for any hE (0, k). The set of elastic
directions at s will be denoted A(s) and its closure .4(s); the complement of .4(s) will be denoted
B(s).

(2) s is a plastic state if there exists a plastic direction at s.
(3) s is a regular plastic state if r E B(s) implies - r E .4(s); the set of regular plastic states will

be denoted P.
Axiom 1. There exists an open set P' of plastic states such that P is a dense subset of p', and

such that the following postulates hold at all s E P': (a) If s' =(A', q) and s" =(A", q) belong to a
neighborhood of s =(A, q) in P', such that s' is attainable from sand s" is attainable from s', then s" is
attainable from s. (b) The mapping Sf-+ .4(s) is continuous. (For defining continuity, we may use a
metric d' on a collection Cof closed sets in R", defined as follows: d'(A, B) =sup d(x, B) +sup

xe'" xeB

d(x, A), A E C, BE C, d being a standard metric on R").
Lemma I. At every s E p', .4(s) is a closed convex cone.
Proof: LetA' =A+ hr, withrE A(s),O< h < k,andA" =A+ h'f',withA' E A(s'),O< h' < k';

then, by postulate 1(a), hr+ h'~' E A(s) for any hE (0, k) and any h' E (0, k'), or, equivalently,

ar+b~' E A(s)for any a, b> O. But from postulate I(b) we infer that if s' =s+O(h) then lim sup
11-00 "e"'ls)

inf I~' - AI =0; thus for any ~E .4(s), lim inf I~' - ~I =0, so that for every ~ E .4(s) there
"'e"'(s') 11-00 "'e",(s')

exists a ~' E .4(s') such that lim ~' =~. Consequently ar+b~E .4(s) for every r, ~ E .4(s) and
11-00

a,b>O.
Lemma 2. At every s =(A, q) E P there exists adirection fiCA, q) such that r E .4(s) if an only if

r· fi(A,q)sO.
Proof: By Lemma I, B(s) is an open concave cone; but to satisfy regularity, it must reduce to an

open half-space so that .4(s) is a closed half-space, its boundary being a hyperplane; the lemma
follows if fiCA, q) is a vector normal to this hyperplace and pointing into B(s).

The continuity postUlate I(b) obviously also implies that fi(·, q) is continuous at every A with
(A, q) E P; this means that fiCA, q) . dA is a Pfaffian form in R7

• Since states with fi(A, q) . dA < 0
are attainable from (A, q), we have a sufficient condition for the operation of Caratheodory's
principle, which we can state as a theorem without formal proof.

Theorem. At a state (A, q) E P there exists a neighborhood N of A and real-valued functions
g(', q) E CI(N), h(·, q) E C(N) such that

afi(A, q) =h(A, q) aA g(A, q).

In other words, fiCA, q) is normal to the surface (in R7) g(A, q) =constant, passing through
A. Such a surface is called a loading surface and g (which is not unique, since it can be replaced
by any continuously differentiable function of g) is called a loading function. It is convenient to
define the pair (g, h) so that h is positive. A plastic direction at (A, q) will also be called a
loading direction. Specifically, we are interested in the direction represented by A. We have a
loading direction if

g>O,

where
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def a .
g = aA g(A. q). A

An elastic direction Ais called unloading if g<0 and neutral loading if g=O.
A flow rule is a function ~: P x R' -+ Q such that
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We note that it = 0 if g:s 0, and it '# 0 if g>O. The material is rate-independent if it is
homogeneous of the first degree in A. The simplest rate-independent flow rule is then

it = w(A. q) (i) (1)

where w: P -+ Q is assumed continuous and (.) denotes the ramp function or Macauley bracket.
More specifically, the term "flow rule" may be reserved for those components of q which

correspond to Fp. If we define the plastic distortion rate Lp= FpFp- I
, then we may write

L p = N(A, q)(i). (2)

Since g is not unique, neither is wor N. It may be convenient to have N(A, q) as a unit tensor in
the sense that tr[N(A, q)NT (A, q)] = 1; then g (whenever it is positive) may be interpreted as the
magnitude of the plastic deformation rate. For example, it is known from dislocation theory
that the plastic deformation rate due to a single slip system is given [3] by

Lp = m®nl-rl,

where -r is the shear rate, m is the unit vector in the slip direction and D is the unit slip-plane
normal (in the intermediate configuration). Then we have l-rl =(i), and N=m@o.

It follows from Definition 1that s is not a plastic state if all directions are attainable. It will
be assumed that it is then an elastic state, and the set of elastic states will be denoted E. Of
course, En P =e. But the common boundary of E and P, En P, is not in general empty. If
£>F e, then this boundary is a manifold called the yield hypersurface. Howerer, there exists the
limiting case with £ =e, when E is itself a hypersurface (quasi-yield hypersurface) on which n
is discontinuous [2]. In this case there are no true elastic states, only limiting states between two
plastic domains. This kind of behavior appears to be shown by graphite[4].

3. THERMODYNAMICS AND YIELD CRITERIA
We will now look at the thermodynamics of a rate-independent plastic material element. The

free energy (per unit volume in the reference configuration) is assumed to take the form

and

where (.)5 denotes "symmetric part". Therefore, by the chain rule,

(3)
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The second law of thermodynamics for a material element will be expressed in the form of
the Clausius-Planck inequality, namely,

. . I .
a =- '" - 118 +2tr (PC) 2!: 0, (4)

where T/ is entropy per unit reference volume, and P is the symmetric Piola stress tensor.
Applying the flow rules (1) and (2) and the expression (3) to (4), one obtains

(5)

where

A=2tr(.!.tCN)-~'W8Ce e 8q'

If one accepts the usual thermodynamic relations

... =-~
'r 88'

a priori, then the Clausius-Planck inequality is equivalent to

(6)

(7)

(8)

However, the relations (6) and (7) do not follow from (5). Assuming only the validity of (8), it is
readily seen that (5) is valid if

and

for any aE [0, 1]. The rate of energy dissipation per unit volume is then

a = A({g)- ag).

At this point it is necessary to assert an additional axiom concerning the nature of elastic
response. (An elastic process, let us recall, is one in which q remains constant).

Axiom 2 (elasticity). An elastic process is non-dissipative; that is, gsO implies a =O.

Corollary 1. a =0; consequently, the relations (6) and (7) hold, and a =A{g).

Let us define a new material stress tensor I by

I =C.FpPF/ =(det F)F/T(F/r l
,

'where T is the Cauchy stress tensor. We note that I is in general (unless C. = I) asymmetric;
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however, it differs from T by quantities of order IF. - II (since we usually have det Fp == 1).
Furthermore, the stress power in plastic deformation (per unit reference volume) is given by
tr(ITLp ).

As a consequence of relation (7) we have the additional result:

Corollary 2. The Clausius-Planck inequality is equivalent to

A =tr (l?N) - (il~/ilq) . w ~ o. (9)

If, furthermore, N is normalized as discussed above, then tr(ITN) may be regarded as the
resolved stress in the direction of a virtual plastic deformation N8'Y, while wmay be interpreted
as the change in q corresponding to a unit of plastic deformation. Thus, (a~/aq)' w is the
isothermal change in free energy (per unit reference volume) accompanying a unit of plastic
deformation, at constant C.. Corollary 2 then states that a state cannot be plastic unless the
stress is at least equal to this energy change. This condition may, of course, be satisfied
identically; but if it is not, then (a~/aq) . w is a lower bound to the yield stress.

In fact, if (a~/aq) . w is nothing but the change in dislocation line energy corresponding to a
unit of plastic deformation, then A= 0 corresponds precisely to the derivation of the Frank­
Read source activation stress[S], and it is this stress which is usualJy identified with the initial
yield stress; that is, the stress required for the beginning of plastic deformation. It is common to
use other definitions of yield stress, such as the stress required to produce a sizable plastic
deformation of some prescribed amount. However, only the initial yield stress is consistent
with the notion of yield hypersurface used here in the sense of the boundary between the
elastic and plastic domains. And, as we have seen, this boundary (or at least an inner bound to
it) may be furnished by thermodynamics alone.

4. ADDITIONAL REMARKS
(1) All the preceding results can be derived by using a control space other than temperature­

deformation, e.q. temperature-stress or energy-deformation, with no significant difficulties.
(2) Throughout the work, "elastic" may be replaced by "viscoelastic" if all processes are

assumed to be rapid; that is, being of a duration much shorter than the shortest significant
relaxation time. Of course, they must not be so rapid that the temperature becomes unmeasur­
able.
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